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Prediction Using 
Propagation: From Flu 
Trends to Cybersecurity

situations in real life, such as social systems, cy-
bersecurity, epidemiology, and biology, can be 
modeled using them. They effectively model many 
phenomena because they simultaneously expose 
local dependencies and capture large-scale struc-
ture. Additionally, propagation (diffusion) pro-
cesses—those in which an agent’s state (or action) 
depends on its neighbors’ states (or actions)—over 
networks can give rise to a wide array of macro-
scopic behavior, leading to challenging and excit-
ing research problems. How do contagions like Eb-
ola and infl uenza spread in population networks?1

Which group should we market to for maximiz-
ing product penetration? How do we place sensors 
in a water-distribution network? How do rumors 
spread on Twitter or Facebook? All of these ques-
tions are related to propagation phenomena on 
networks.

Social network websites like Facebook count 
millions in users and revenue. Hospital-acquired 
infections take thousands of lives and cost billions 
of dollars per year. The societal impacts of net-
worked collaboration during political events such 
as the Arab Spring have been well documented, 
too. Cybersecurity is also a serious national eco-
nomic issue right now. Hence, research in this 
area, helping us answer questions like how infor-
mation spreads through social media2 and how 
to distribute antibiotics across hospitals,3,4 holds 
great scientifi c, social, and commercial value.

This article will examine recent efforts at utiliz-
ing propagation-based concepts for predicting fl u 
trends using public Twitter data.5,6 In addition, we 
will also briefl y discuss leveraging propagation for 

malware count prediction7,8 using extensive fi eld 
datasets.

Syndromic Surveillance of Flu
Machine learning techniques for “nowcasting” the 
fl u have made signifi cant inroads into correlating 
social media trends to case counts and the preva-
lence of epidemics in a population. Web searches 
and social media sources such as Twitter and 
Facebook have emerged as surrogate data sources 
for monitoring and forecasting the rise of public 
health epidemics. The celebrated example of such 
surrogate sources is arguably Google Flu Trends 
(GFT), which harnessed user query volume for a 
handcrafted vocabulary of keywords in order to 
yield estimates of fl u case counts. Such surrogates 
thus provide an easy to observe, indirect approach 
to understanding population-level health events. 
However, recent research has noted GFT’s lacklus-
ter performance,9 which could be attributed to it 
not accounting for the evolving nature of the vo-
cabulary, and a lack of transparency about which 
keywords are used, which affects verifi cation.

Motivated by such considerations, we aim to bet-
ter bridge the gap between syndromic surveillance 
strategies and contagion-based epidemiological 
modeling. We focus on Twitter data from 15 South 
American countries for this purpose. Diseases such 
as the fl u have been traditionally modeled as a prop-
agation process on population contact networks 
using models such as SI (Susceptible-Infected) and 
SEIS (Susceptible-Exposed-Infected-Susceptible).1

Current methods do not use this observation for 
prediction. Using just keywords to track infected 
users on Twitter cannot distinguish between users 
belonging to these different epidemiological phases. 
For example, tweets such as “Down with fl u. Not 
going to school.” and “Recovered from fl u after 5 
days, now going to the beach” denote the users’ 
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 different epidemiological states (see 
also Figure 1a).

We show that we can separate out 
these states from the tweets using a 
temporal topic model. This not only 
helps in interpretability, but it also 
leads to more accurate predictions 
of flu-case counts robust to noisy vo-
cabularies. The key idea is to assume 
different generating topic distribu-
tions for users in each epidemiologi-
cal phase, and then assume Markov-
chain-style transitions between the 
states. We also assume the presence 
of background topics and non-flu-re-
lated topics that do not denote any 
flu-related state. We can then fit this 
model to training data using stan-
dard methods (we used Expectation-
maximization; others, such as Gibbs-

sampling, could also be used). We 
show the state transition learned by 
our model HFSTM (Hidden Flu State 
from Tweet Model) automatically on 
the real data in Figure 1b; it matches 
well with the standard SEIS model.

Figure 2 shows the most frequent 
words for each learned state distri-
bution via a word cloud. Again, the 
words meaningfully correspond to 
the states. In addition, thanks to 
the finer-grained modeling, our ap-
proach gets better predictions of the 
incidence of flu cases than direct key-
word counting and also sometimes 
gets better predictions of flu peaks 
than sophisticated methods such 
as GFT (see Figure 3). Our original 
model used unsupervised topic mod-
eling, so it needed an initial clean 

flu-related vocabulary. However, we 
extended it by using semisupervised 
models in which words in the vo-
cabulary can have different aspects 
(for example, flu or non-flu related). 
Intuitively, this way words get a soft 
assignment instead of the hard as-
signment we had originally. As a re-
sult, we could robustly learn states 
and topics even with an enlarged and 
noisier vocabulary,6 which will also 
help mitigate the effects of the chang-
ing nature of the vocabulary in real 
deployment.

Malware Surveillance
Similarly, propagation-based concepts 
can also play an important role in 
cybersecurity. In the security sphere, 
such problems include understanding 

Figure 1. Comparison between expected state transition and the state transitions learned by our model. (a) A toy example 
showing possible user states and a tweet associated with each state. (b) State transition probabilities learned by our method.5 
Note that the state transition probabilities learned by our method match with the expected epidemiological SEIS model.
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the propagation of malware (such as 
estimating the number of machines 

infected) or characteristics of benign 
files. These questions have numerous 

implications for cybersecurity, from 
designing better antivirus software to 
designing and implementing targeted 
patches to more accurately measuring 
the economic impact of breaches. 
These problems are compounded 
by the fact that, as externals, we 
can only detect a fraction of actual 
malware infections.

To answer such problems, security 
researchers and analysts are increas-
ingly using comprehensive, field-gath-
ered data that highlights the current 
trends in the cyber-threat landscape. 
We have been working on Symantec’s 
Worldwide Intelligence Network En-
vironment (WINE) data for precisely 
this purpose. This data is collected 
from real-world hosts running their 
consumer antivirus software. Users 
of Symantec’s consumer product line 
can opt in to report telemetry about 
the security events (for example, exe-
cutable file downloads or virus detec-
tions) that occur on their hosts. The 
events included in WINE are repre-
sentative of events that Symantec ob-
serves around the world, and they do 
not include personally identifiable 
information.

Our approach has been to leverage 
generative propagation-based mod-
els, sometimes in conjunction with 
careful feature engineering, to better 
predict trends and actual estimates 
of malware infections.7,8 As the mod-
els are generative, their parameters 
can also serve as features for further 
analytics tasks such as anomaly de-
tection. Our ideas included having 
specific phases matching domain-
based constraints (for example, hav-
ing different “infected” versus “de-
tected” versus “patched” states), or 
exploring nonexponential residence 
times in each state. After building 
the model, we fit it by minimizing 
the least-square errors using standard 
nonlinear numerical methods (see Fig-
ure 4). One lesson we learned was 

(a)

(b)

(c)

Figure 2. The translated word cloud for the most probable words in the (a) S, (b) E, 
and (c) I state-topic distributions, as learned by our method. Words are originally 
learned and inferred in Spanish; we then translate the result using Google Translate 
for ease of understanding. The size of a word is proportional to its probability in 
the corresponding topic distribution. Our model can tease out the differences in the 
word distributions between them.
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that such  models typically work for 
high-volume files (that is, files that 
have enough samples such that any 
form of meaningful modeling is pos-
sible). For low-prevalence files, fea-
ture-based approaches tend to give 

low prediction errors. Thus, we fur-
ther improved our predictions and 
made them more robust by building 
ensemble methods that combine the 
best of both generative and feature-
based models.8

This is a diverse area, because prop-
agation and networks occur in many 
different applications. The recent ex-
plosion in the availability of large-scale 
datasets presents a unique opportunity 
to conduct large-scale predictive studies  
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Figure 3. Evaluation for the two test scenarios: (a) test period 1 and (b) test period 2. Comparison of the week-to-week 
predictions against ground truth Pan American Health Organization (PAHO) case counts using the three models: a baseline 
model, which does simple keyword counting; our method, HFSTM; and Google Flu Trends (GFT). Our model outperforms the 
baseline and is comparable to GFT, beating it in test period 2. GFT overestimates the peak in both test periods.

Figure 4. Our propagation-based model7 fits real data from Symantec’s Worldwide Intelligence Network Environment (WINE) 
database about malware infections per unit time very well, both before and after sampling. The median relative standard error 
in this case was 0.0741.
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using these models. There are many 
open problems: for example, in the on-
line sphere, similar questions can be 
posed about predicting how memes 
spread over blogs and websites. Here, 
too, propagation-inspired models tai-
lored to the application (for example, 
by incorporating the human response-
time distributions)2 can be useful in 
outperforming other standard time-
series analysis tools. Overall, there is 
rich overlap of propagation with many 
areas in data mining, and we envision 
many more use cases for such models 
in the future. 
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